ش | ی | د | س | چ | پ | ج |
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |
در لینک زیر می توانید پکیج های مربوط به مقیاس پردازی چندبعدی را در نرم افزار R را مشاهده کنید:
http://cran.r-project.org/web/views/Psychometrics.html
multidimensional scaling (MDS) based on stress minimization by means of majorization: Simple smacof on symmetric dissimilarity matrices, smacof for rectangular matrices (unfolding models), smacof with constraints on the configuration, three-way smacof for individual differences (including constraints for idioscal, indscal, and identity), and spherical smacof (primal and dual algorithm). |
1 |
|
multiway method to decompose a tensor (array) of any order, as a generalisation of SVD also supporting non-identity metrics and penalisations. 2-way SVD with these extensions Some other multiway methods: PCAn (Tucker-n) and PARAFAC/CANDECOMP with extensions. |
2 |
|
functionalities for computing classical MDS using the cmdscale() function. Sammon mapping sammon() non-metric MDS isoMDS() |
3 |
|
Non-metric MDS with metaMDS() Function nmds() Some routines Function for metric MDS |
4 |
|
Principal coordinate analysis with capscale()pco() and with dudi.pco() |
5 |
|
maximum likelihood difference scaling (MLDS). |
6 |